5/14/2017 – The draw virus is still latent in Moscow, but at least the number of decisive games doubled from yesterday! Nepomniachtchi came back with a vengeance after his loss yesterday to defeat Hammer with the black pieces. Ding Liren played an exemplary game against Ernesto Inarkiev and ties with Hou Yifan at the lead. We have analysis of those games, and of course, the short draws...

Along with the ChessBase 14 program you can access the Live Database of 8 million games, and receive three months of free ChesssBase Account Premium membership and all of our online apps! Have a look today!

The time control in the GP tournaments is 100 minutes for the first 40 moves, 50 minutes for the next 20 moves and then 15 minutes for the rest of the game plus an additional 30 seconds per move starting from move one.

The Grand Prix returns to the Telegraph Building in central Moscow, which previously hosted the 2016 Candidates Tournament won by Sergey Karjakin of Russia.

The tournament, a nine round Swiss contest, is the second of four Grand Prix in 2017 and follow’s the Sharjah Grand Prix in February which was won by Alexander Grischuk, Maxime Vachier-Lagrave and Shakhriyar Mamedyarov in a three way tie.

The Moscow Grand Prix is sponsored by Kaspersky Lab, PhosAgro and EG Capital Partners.

Each round starts at 2PM (GMT +3).

Bo. | Name | FED | Rtg |
Pts. |
Result |
Pts. |
Name | FED | Rtg |

1 | Hou Yifan | CHN | 2652 |
1 |
½ - ½ |
½ |
Vachier-Lagrave Maxime | FRA | 2795 |

2 | Nakamura Hikaru | USA | 2786 |
½ |
½ - ½ |
½ |
Radjabov Teimour | AZE | 2710 |

3 | Adams Michael | ENG | 2747 |
½ |
½ - ½ |
½ |
Giri Anish | NED | 2785 |

4 | Ding Liren | CHN | 2773 |
½ |
1 - 0 |
½ |
Inarkiev Ernesto | RUS | 2727 |

5 | Gelfand Boris | ISR | 2724 |
½ |
½ - ½ |
½ |
Mamedyarov Shakhriyar | AZE | 2772 |

6 | Svidler Peter | RUS | 2755 |
½ |
½ - ½ |
½ |
Salem A.R. Saleh | UAE | 2633 |

7 | Grischuk Alexander | RUS | 2750 |
½ |
½ - ½ |
½ |
Tomashevsky Evgeny | RUS | 2696 |

8 | Vallejo Pons Francisco | ESP | 2710 |
½ |
½ - ½ |
½ |
Harikrishna P. | IND | 2750 |

9 | Hammer Jon Ludvig | NOR | 2621 |
½ |
0 - 1 |
0 |
Nepomniachtchi Ian | RUS | 2751 |

*All photos by Max Avdeev*

Let's start with the bad:

Sutovsky, ACP President, maybe has hit the nail on the head: A virus is going around and it follows the players around the Grand Prix series. This is, at least for me, more comforting than so many players simply lacking fighting spirit.

Grischuk and Tomashevsky agreed to draw in 12 moves for no discernible reason. Svidler offered a draw on move 16 with White against a lower rated opponent, Salem Saleh, presumably because he felt his position was already slightly worse. He might've been right, but Salem didn't give declining the offer a second thought. Nakamura put no pressure at all on Radjabov who sealed their draw on move 18.

Salem starts with two quick draws in Moscow, arguably better than starting with two losses as he did in Sharjah.

Arguably because at least the losses were learning experiences...

Even Gelfand, a great chess fighter, seems to have been infected:

Gelfand didn't torture his opponent with the two bishops

[Event "Moscow Grand Prix 2017"] [Site "Moscow RUS"] [Date "2017.05.13"] [Round "2.5"] [White "Gelfand, Boris"] [Black "Mamedyarov, Shakhriyar"] [Result "1/2-1/2"] [ECO "D02"] [WhiteElo "2724"] [BlackElo "2772"] [SetUp "1"] [FEN "r2r4/p1k2ppp/2p2n2/2b2p2/2B5/4P3/PP1B1PPP/R2R2K1 b - - 0 17"] [PlyCount "10"] [EventDate "2017.05.12"] [EventType "tourn"] {[#]} 17... Nd5 18. Ba5+ Bb6 {There is no doubt that White is better. He has the pair of bishops and a safer king. Yeah, there is no immediate win or anything, but why not play on?} 19. Bxd5 (19. Be1 {and Black will have to suffer for a while to make his draw.}) 19... Rxd5 20. Rxd5 cxd5 21. Bc3 g5 { Black has really survived the worse and the endgame is probably equal.} 22. Rd1 1/2-1/2

Of course, not every game was boring. Hou Yifan playing against MVL on the top board was only marginally more exciting, though. MVL might have come under just a bit of pressure out of the opening, but once he solved his problems he forced liquidation into a drawn endgame.

Yifan tried to put some pressure, but MVL equalized almost immediately.

It is unclear who made the first move, unfortunately.

Adams and Giri played an exciting game, in which Giri's pawn sacrifice to open up his light squared bishop gave him a good position. The battle was tense and it culminated in an unusual perpetual check.

One of the most interesting games today

Next we have the two decisive games. Nepomniachtchi used a Pirc Defense to play for the win against Jon Ludvig Hammer, trying to recover from yesterday's loss. He did so very successfully, and he simply proved that he was the better player. Hammer lacked ideas from the opening and once Black stabilized his position, he went on the offensive and won easily.

Another interesting game was the duel between Ding Liren and Ernesto Inarkiev, all of which spawned from a curious opening idea:

Ding Liren played a fine game today to tie Yifan for the lead

[Event "Moscow Grand Prix 2017"] [Site "Moscow RUS"] [Date "2017.05.13"] [Round "2.4"] [White "Ding, Liren"] [Black "Inarkiev, Ernesto"] [Result "1-0"] [ECO "A20"] [WhiteElo "2773"] [BlackElo "2727"] [Annotator "Ramirez Alvarez,Alejandro"] [PlyCount "173"] [EventDate "2017.05.12"] [EventType "tourn"] 1. c4 e5 2. g3 Nf6 3. Bg2 c6 4. Nf3 (4. d4 {is the main line by quite a margin, but not the only move} Bb4+ {is one of the many lines black has tried recently. }) 4... e4 5. Nd4 d5 6. d3 $5 {almost inexistent} (6. cxd5 Qxd5 (6... cxd5 7. d3 {is already dubious for Black's structure.}) 7. Nc2 Qh5 $1 {with complex play, like Sviderl-Wang Hao from last year.}) 6... exd3 7. cxd5 $5 Bb4+ 8. Nc3 c5 9. Nb3 c4 10. Nd2 {Certainly an unusual position. The White knight has already played fouro times to land on d2, while Black has pushed his pawns forward! It's still hard to asses the position.} O-O 11. O-O (11. Nxc4 { is the computer brave move.}) 11... Bxc3 12. bxc3 Bg4 13. f3 dxe2 {after this Black is worse, but I haven't found a clear improvement on his previous play. Either the line is bad or he has to go for the crazy 13...Nxd5.} (13... Nxd5 $5 14. fxg4 Nxc3 15. Qe1 Nxe2+ 16. Kh1 Nc6 {is quite weird to evaluate. Even if Black allows Ba3 x f8 the position with so many passed pawns is not entirely clear.} (16... c3 $5)) 14. Qxe2 Bf5 15. Nxc4 Qxd5 16. Rd1 Qb5 17. a4 Qa6 { Computers already evaluate this as much better for White. The reason is the pair of bishops and the superior development that White has.} 18. Bf1 (18. Ba3 $1 Re8 19. Qf1 {is a similar idea than the game but with better execution}) 18... Be6 19. Nd6 Qxe2 20. Bxe2 b6 21. Nb5 Bb3 22. Rd6 Nbd7 23. a5 Rfc8 24. Kf2 h6 {Black is simply getting tortured in this position.} 25. Be3 Ne5 26. Bd4 Nc4 27. Rxf6 $1 {A beautiful combination.} gxf6 28. Bxc4 Bxc4 (28... Rxc4 29. axb6 {is winning for White without question}) 29. Nd6 bxa5 (29... Rc6 30. Nxc4 Rxc4 31. axb6 {is again simply unholdable.}) 30. Nxc8 Rxc8 31. Rxa5 {The opposite colored bishop endgame is very unpleasant for Black. With perfect play it's probably a draw, but that's almost impossible to do in these circumstances} Re8 32. g4 a6 33. Rc5 Bd3 34. Bxf6 Re6 35. Bd4 Kf8 36. h4 Ke8 37. Rc8+ Kd7 38. Rf8 Ke7 39. Bc5+ Kf6 40. Rh8 Kg7 41. Bd4+ f6 42. Rd8 Bc4 43. Rd7+ Kg8 44. Ra7 Bd3 45. Kg3 Rc6 46. h5 Bc2 47. f4 Bd1 48. Kh4 Rd6 49. Ra8+ Kf7 50. Rh8 Kg7 51. Rc8 Kf7 52. Rc7+ Kg8 53. Rc5 $6 (53. f5 {would have allowed a quick Be3-xh6 and there is nothing Black can do about it.}) 53... Kf7 54. g5 fxg5+ 55. fxg5 hxg5+ 56. Kxg5 Bc2 57. Rc7+ Ke6 58. h6 Rd5+ 59. Kg4 Rd7 {Black has hope again} 60. Rc6+ Rd6 61. Rc7 Rd7 62. Rc5 Rd5 63. Rc8 a5 64. Re8+ Kd7 $2 (64... Kf7 { keeping the king close to the kingside for now was a better alternative.} 65. Ra8 Bd1+ 66. Kg3 Rg5+ 67. Kf2 Rh5 {and Black doesn't lose his a-pawn.}) 65. Ra8 a4 (65... Bd1+ 66. Kf4 Bc2 67. h7 $18) 66. h7 Bxh7 67. Ra7+ Kc6 68. Rxh7 { Black's a-pawn is not enough. The rest is easy.} Ra5 69. Rh6+ Kd7 70. Kf4 a3 71. Rh1 a2 72. Ra1 Kc6 73. Ke4 Kb5 74. Kd3 Ra8 75. Kc2 Kc4 76. Kb2 Rb8+ 77. Kxa2 Kd3 78. Rh1 Kc2 79. Ka3 Kd3 80. Rh5 Rb1 81. Ka4 Rb8 82. Rb5 Ra8+ 83. Kb4 Rc8 84. Rb7 Rc4+ 85. Kb5 Rc8 86. Bg7 Rd8 87. c4 1-0

The other super long game of the day featured another opposite colored bishop endgame with rooks. Spain's Vallejo Pons was on the offensive, while India's Harikrishna was again fighting for his life. Again, Hari was able to pull it off, as the Spaniard was unable to find the correct winning plan after a grueling battle.

As a curious side note, Harikrishna has played seven (!) times more moves than Grischuk has after only two rounds of chess (23 by Grischuk and 174 by Harikrishna).

Vallejo missed a big chance today to play his first decisive game

in the Grand Prix series (he scored nine draws in Sharjah)

Grischuk was interviewed yesterday about his game, and he admitted to being under the weather (due to bad weather!) and the reason for his draw. Presumably, it is the same reason today:

Naturally, since this is a Swiss tournament, the two leaders will face each other on board one. Yifan will repeat White in a crucial round three for both players.

Rk. | Name | FED | Rtg | Pts. | rtg+/- |

1 | Ding Liren | CHN | 2773 | 1,5 | 3,5 |

Hou Yifan | CHN | 2652 | 1,5 | 8,3 | |

3 | Vachier-Lagrave Maxime | FRA | 2795 | 1,0 | -2,6 |

Nakamura Hikaru | USA | 2786 | 1,0 | -1,8 | |

Giri Anish | NED | 2785 | 1,0 | -1,3 | |

Mamedyarov Shakhriyar | AZE | 2772 | 1,0 | -1,6 | |

Svidler Peter | RUS | 2755 | 1,0 | -2,5 | |

Nepomniachtchi Ian | RUS | 2751 | 1,0 | -3,2 | |

Grischuk Alexander | RUS | 2750 | 1,0 | -2,4 | |

Harikrishna P. | IND | 2750 | 1,0 | -2,3 | |

Adams Michael | ENG | 2747 | 1,0 | 1,2 | |

Gelfand Boris | ISR | 2724 | 1,0 | 1,5 | |

Radjabov Teimour | AZE | 2710 | 1,0 | 1,9 | |

Vallejo Pons Francisco | ESP | 2710 | 1,0 | 1,5 | |

Tomashevsky Evgeny | RUS | 2696 | 1,0 | 1,6 | |

Salem A.R. Saleh | UAE | 2633 | 1,0 | 3,3 | |

17 | Inarkiev Ernesto | RUS | 2727 | 0,5 | -3,6 |

Hammer Jon Ludvig | NOR | 2621 | 0,5 | -1,5 |

Bo. | Name | FED | Rtg | Pts. | Result | Pts. | Name | FED | Rtg |

1 | Hou Yifan | CHN | 2652 | 1½ | 1½ | Ding Liren | CHN | 2773 | |

2 | Vachier-Lagrave Maxime | FRA | 2795 | 1 | 1 | Gelfand Boris | ISR | 2724 | |

3 | Tomashevsky Evgeny | RUS | 2696 | 1 | 1 | Nakamura Hikaru | USA | 2786 | |

4 | Giri Anish | NED | 2785 | 1 | 1 | Vallejo Pons Francisco | ESP | 2710 | |

5 | Mamedyarov Shakhriyar | AZE | 2772 | 1 | 1 | Adams Michael | ENG | 2747 | |

6 | Harikrishna P. | IND | 2750 | 1 | 1 | Svidler Peter | RUS | 2755 | |

7 | Nepomniachtchi Ian | RUS | 2751 | 1 | 1 | Salem A.R. Saleh | UAE | 2633 | |

8 | Radjabov Teimour | AZE | 2710 | 1 | 1 | Grischuk Alexander | RUS | 2750 | |

9 | Inarkiev Ernesto | RUS | 2727 | ½ | ½ | Hammer Jon Ludvig | NOR | 2621 |

AGON is offering exclusive pay-per-view video of the games and live commentary. It comes in three packages: a one-time $10 fee just for Moscow GP, a full package of all the events in the World Championship cycle for $30, and a $250 package, which is the same as the $30 Base but comes with signed posters from each event.

For more information, see the widget on the main page.

## LinksThe games are being broadcast live on the official web site and on the chess server |

Discussion and Feedback
Join the public discussion or submit your feedback to the editors

More...

2

@Fons

Since I have pointed out that you have misquoted my statement, which is a fraud and you have answered yourself, which is, by the way strawman argumentation I am not really surprised that you have got the nerve to tell me that I am deliberately misunderstanding your statements, whereas this very thing was proven in your case. I would be deeply ashamed if I were you and the first thing I would do in that case would be to apologize for the fraud you have done.

You tell me you need to decipher my comments and you find no sense in them, yet, earlier it was you who questioned my ability to comprehend written comments. Maybe you should apologize for that as well.

"Yet, the fact that White's presumed advantage is not proven was used as an argument that the players should get equal amount of points until proven otherwise."

This statement does not mean that the players should split the point. This statement states that the players, in case of a draw should get equal amount of points, until proven otherwise. For example your proposed system violates this principle, as White would get less points for a draw than Black. The classical system fulfills this principle. The Bilbao system - surprise, surprise - fulfills this principle as well, as giving 1 point for each player in case of a draw fulfills giving them both the same amount of points in case of a draw, however, the amount given to the players, which is 1 is a third of a win, which is 3, not half of it.

"It was NOT used as an argument to support the idea that a draw should value half a win."

If we do not know whether White has an advantage, then we do not know how should we change the way we are giving points in case of a draw. This is an argument for giving the same amount of points to the players in case of a draw and this argument was not given in support for the principle that a draw should value half a win. I have given you a different argument to support that. My argument was that if we do not give the same amount of points in total for a drawn game than for a decisive game, then we undervalue a drawn game compared to a decisive one, which, in my opinion is unfair. An extreme example is when we give 3 points for a defaulting (which is literally a non-game) and 2 points in total for a draw which was played for hours. Since we cannot know the value of a given game based solely on its result and there is no standard evaluation either, I find the Bilbao system philosophically unsound.

Note that I have not used the word "split" in this conversation, because I have addressed two separate issues:

1. Giving the same amount of points for White and Black for the same result (which is violated by your proposed system)

2. Making sure that the total points given for a game is constant for all the possible kinds of results (which is violated by the Bilbao system)

It is your problem that you stated that you do not want to read my answer, since you used insults and fraud to "prove" your point I will not let you elegantly flee from this debate. So when you reach this point in reading, you have two possible inconvenient choices. The first choice is to be consistent to

"I can't be bothered anymore trying to decipher your comments only to find that they make no sense. "

and remain silent. The other is to be inconsistent with that and write an answer. Just remember, it was you, who has put yourself into this situation and I can only congratulate you for it.

Since I have pointed out that you have misquoted my statement, which is a fraud and you have answered yourself, which is, by the way strawman argumentation I am not really surprised that you have got the nerve to tell me that I am deliberately misunderstanding your statements, whereas this very thing was proven in your case. I would be deeply ashamed if I were you and the first thing I would do in that case would be to apologize for the fraud you have done.

You tell me you need to decipher my comments and you find no sense in them, yet, earlier it was you who questioned my ability to comprehend written comments. Maybe you should apologize for that as well.

"Yet, the fact that White's presumed advantage is not proven was used as an argument that the players should get equal amount of points until proven otherwise."

This statement does not mean that the players should split the point. This statement states that the players, in case of a draw should get equal amount of points, until proven otherwise. For example your proposed system violates this principle, as White would get less points for a draw than Black. The classical system fulfills this principle. The Bilbao system - surprise, surprise - fulfills this principle as well, as giving 1 point for each player in case of a draw fulfills giving them both the same amount of points in case of a draw, however, the amount given to the players, which is 1 is a third of a win, which is 3, not half of it.

"It was NOT used as an argument to support the idea that a draw should value half a win."

If we do not know whether White has an advantage, then we do not know how should we change the way we are giving points in case of a draw. This is an argument for giving the same amount of points to the players in case of a draw and this argument was not given in support for the principle that a draw should value half a win. I have given you a different argument to support that. My argument was that if we do not give the same amount of points in total for a drawn game than for a decisive game, then we undervalue a drawn game compared to a decisive one, which, in my opinion is unfair. An extreme example is when we give 3 points for a defaulting (which is literally a non-game) and 2 points in total for a draw which was played for hours. Since we cannot know the value of a given game based solely on its result and there is no standard evaluation either, I find the Bilbao system philosophically unsound.

Note that I have not used the word "split" in this conversation, because I have addressed two separate issues:

1. Giving the same amount of points for White and Black for the same result (which is violated by your proposed system)

2. Making sure that the total points given for a game is constant for all the possible kinds of results (which is violated by the Bilbao system)

It is your problem that you stated that you do not want to read my answer, since you used insults and fraud to "prove" your point I will not let you elegantly flee from this debate. So when you reach this point in reading, you have two possible inconvenient choices. The first choice is to be consistent to

"I can't be bothered anymore trying to decipher your comments only to find that they make no sense. "

and remain silent. The other is to be inconsistent with that and write an answer. Just remember, it was you, who has put yourself into this situation and I can only congratulate you for it.

@ lajosarpad >>"Yet, the fact that White's presumed advantage is not proven was used as an argument that the players should get equal amount of points until proven otherwise. It was NOT used as an argument to support the idea that a draw should value half a win."

"an argument that the players should get equal amount of points"

is the same as

"a draw should value half a win"

So one leads to the other. If you split the point evenly in case of a draw this means a draw is half a win.

This response from you illustrates perfectly what you keep doing all the time. Repeating the same thing over and over, completely ignoring the points I am making, (deliberately?) confusing and misunderstanding everything, sidetracking etc.

I can't be bothered anymore trying to decipher your comments only to find that they make no sense.

Have a nice day.

"an argument that the players should get equal amount of points"

is the same as

"a draw should value half a win"

So one leads to the other. If you split the point evenly in case of a draw this means a draw is half a win.

This response from you illustrates perfectly what you keep doing all the time. Repeating the same thing over and over, completely ignoring the points I am making, (deliberately?) confusing and misunderstanding everything, sidetracking etc.

I can't be bothered anymore trying to decipher your comments only to find that they make no sense.

Have a nice day.

@Fons 3

"Sidetracking again. It was you who said: "I consider the Bilbao system unsound from philosophical point of view." That's how this whole discussion started and yes I've given alternative examples to illustrate a point. The point being that the Bilbao system is not unsound from a philosophical point of view. Whether or not this means I'm advocating to change the system is entirely beside the point in this discussion. ""

That's a lie.

"I have never done that, I have merely given alternative examples to illustrate a point. "

contradicts with the truth:

"I don't see what's philosophically unsound about this. Better performance; more points.

0 loss with white

1 loss with black

2 draw with white

3 draw with black

4 win with white

5 win with black

Imo this makes the most sense and reflects the game more accurately."

since you value your system better than other systems. Since this makes the most sense according to you, how come that you did not want to change the current system?

"Ok so what's the "quantifiable, provable, objective result of rigorous research" that shows a draw must be worth exactly half a win? And don't say it's "fair" because: "We should not rely on our subjective feelings". "

A given draw could be worth more or could be worth less than half of a win. There is no way you can determine it just from the result and there is no accepted standard to determine it. Changing the current fair system to something else should be proven. Not I should prove that your change is invalid. You should prove your statement. But please, no more lies, as I do not consider my allocated time into this debate very useful.

"Sidetracking again. It was you who said: "I consider the Bilbao system unsound from philosophical point of view." That's how this whole discussion started and yes I've given alternative examples to illustrate a point. The point being that the Bilbao system is not unsound from a philosophical point of view. Whether or not this means I'm advocating to change the system is entirely beside the point in this discussion. ""

That's a lie.

"I have never done that, I have merely given alternative examples to illustrate a point. "

contradicts with the truth:

"I don't see what's philosophically unsound about this. Better performance; more points.

0 loss with white

1 loss with black

2 draw with white

3 draw with black

4 win with white

5 win with black

Imo this makes the most sense and reflects the game more accurately."

since you value your system better than other systems. Since this makes the most sense according to you, how come that you did not want to change the current system?

"Ok so what's the "quantifiable, provable, objective result of rigorous research" that shows a draw must be worth exactly half a win? And don't say it's "fair" because: "We should not rely on our subjective feelings". "

A given draw could be worth more or could be worth less than half of a win. There is no way you can determine it just from the result and there is no accepted standard to determine it. Changing the current fair system to something else should be proven. Not I should prove that your change is invalid. You should prove your statement. But please, no more lies, as I do not consider my allocated time into this debate very useful.

@Fons 2

"Statistics are more than enough to make this a reasonable assumption however."

Statistical patterns change over time, therefore you cannot assume that the statistic sample taken at a given moment is the absolute truth. If we use the statistics in this case, then we will need to periodically reevaluate, which will make the scores of a tournament confusing if the sample has changed since then. This is why I think statistics are not enough in this case.

"You could start debating the Elo rating formula the same way."

True, but I am not doing that, since in that case there is no valid fallback logic.

"No you had not. Only in your last comment did you mention fairness. But fairness is subjective. "

I had.

""I have merely pointed out that different valuations -as in the Bilbao system- are also possible and valid. "

Nope."

Invalid quote. In fact, this is a form of fraud. My answer was not "Nope.". It was

"Nope, you used insults as well and still not apologized for those."

I would not be proud for using insults in a debate either. You are knowingly addressing something else than what I said here. You know perfectly that my "Nope" addresses your "merely" and I have added what else you did. Yet, you address my answer like it was stating that you did not say your quote. Since you have committed a fraud in wrongly quoting what I said, your answer:

"Err... yes. I know what I said and yes that's what I said. You can simply go back to my previous comments to see. Different valuations are possible and valid if they are based on reasonable assumptions. "

is of course invalid and it is also outside of correctness.

"I would argue that statistics are more than enough to make it a reasonable assumption that white has an advantage. "

There is nothing wrong to have that opinion and it is founded on statistical arguments as well. Yet it is not a proof.

"This implies that you believed white has no advantage."

Wrong. Not accepting a factual statement in lack of proof does not mean believing the opposite. I am opposing premature assumptions in general, that is, if you stated that White has no advantage I would ask you to prove that as well. I just did not accept your assumption as a fact as it is unscientific. Assuming the opposite statement would be unscientific as well.

"If that's not what you intended then maybe you should be more careful about how you write your comments."

I do not have the intention to lower the level of my comments because they might be misunderstood by someone who does not know the rules how scientific questions are being evaluated and debated. It is you who should acknowledge that skeptical approach to unproved statement does not mean the assumption of the given statement's opposite.

"Also you keep referring to this issue throughout your writings even though it's only relevant in a system that gives a different score to a white win vs a black win. "

Or different score for White draw than Black draw. Your proposed system has both.

"As long as you keep saying that 1+1=3 I will keep saying that 1+1=2. "

I have never said 1+1=3. If you refer this to some other statements, then show where are they wrong.

"Now you are referring to the contents of the game itself, need I repeat that this is subjective? Btw: following this logic would lead us to give more points to a beautiful game and less points to a boring game, the exact opposite of what you're trying to argue for."

My point was that based on the result you do not know the exact value of a game. The game's value is a complicated subject to address and we do not have a standard system to do such an evaluation. Therefore I did not state that a beautiful game should be valued more than a boring game. I stated that a boring game should not be valued more than a beautiful game just because it was decisive. Again, you "misunderstand" my point and address something else.

"Statistics are more than enough to make this a reasonable assumption however."

Statistical patterns change over time, therefore you cannot assume that the statistic sample taken at a given moment is the absolute truth. If we use the statistics in this case, then we will need to periodically reevaluate, which will make the scores of a tournament confusing if the sample has changed since then. This is why I think statistics are not enough in this case.

"You could start debating the Elo rating formula the same way."

True, but I am not doing that, since in that case there is no valid fallback logic.

"No you had not. Only in your last comment did you mention fairness. But fairness is subjective. "

I had.

""I have merely pointed out that different valuations -as in the Bilbao system- are also possible and valid. "

Nope."

Invalid quote. In fact, this is a form of fraud. My answer was not "Nope.". It was

"Nope, you used insults as well and still not apologized for those."

I would not be proud for using insults in a debate either. You are knowingly addressing something else than what I said here. You know perfectly that my "Nope" addresses your "merely" and I have added what else you did. Yet, you address my answer like it was stating that you did not say your quote. Since you have committed a fraud in wrongly quoting what I said, your answer:

"Err... yes. I know what I said and yes that's what I said. You can simply go back to my previous comments to see. Different valuations are possible and valid if they are based on reasonable assumptions. "

is of course invalid and it is also outside of correctness.

"I would argue that statistics are more than enough to make it a reasonable assumption that white has an advantage. "

There is nothing wrong to have that opinion and it is founded on statistical arguments as well. Yet it is not a proof.

"This implies that you believed white has no advantage."

Wrong. Not accepting a factual statement in lack of proof does not mean believing the opposite. I am opposing premature assumptions in general, that is, if you stated that White has no advantage I would ask you to prove that as well. I just did not accept your assumption as a fact as it is unscientific. Assuming the opposite statement would be unscientific as well.

"If that's not what you intended then maybe you should be more careful about how you write your comments."

I do not have the intention to lower the level of my comments because they might be misunderstood by someone who does not know the rules how scientific questions are being evaluated and debated. It is you who should acknowledge that skeptical approach to unproved statement does not mean the assumption of the given statement's opposite.

"Also you keep referring to this issue throughout your writings even though it's only relevant in a system that gives a different score to a white win vs a black win. "

Or different score for White draw than Black draw. Your proposed system has both.

"As long as you keep saying that 1+1=3 I will keep saying that 1+1=2. "

I have never said 1+1=3. If you refer this to some other statements, then show where are they wrong.

"Now you are referring to the contents of the game itself, need I repeat that this is subjective? Btw: following this logic would lead us to give more points to a beautiful game and less points to a boring game, the exact opposite of what you're trying to argue for."

My point was that based on the result you do not know the exact value of a game. The game's value is a complicated subject to address and we do not have a standard system to do such an evaluation. Therefore I did not state that a beautiful game should be valued more than a boring game. I stated that a boring game should not be valued more than a beautiful game just because it was decisive. Again, you "misunderstand" my point and address something else.

@Fons 1/2

"Even if we assume that white has no advantage it would only support that a white win should be worth the same as a black win, it says nothing about why a draw should be worth exactly half a win. "

I did not assume that White has no advantage, quite the contrary: I am objecting against any premature assumptions. Yet, the fact that White's presumed advantage is not proven was used as an argument that the players should get equal amount of points until proven otherwise. It was NOT used as an argument to support the idea that a draw should value half a win. As I have already described several times, this idea is supported by the argument against valuing more a decisive game in total than a draw. The argument was that we need to share the point among the players totalling the same amount, 1=0.5+0.5=1+0=0+1 in this case because otherwise we would value games differently based on results. If we use the Bilbao system, then 3+0=0+3=3>2=1+1 means that a decisive game is better, in terms of value. The cumulative reward we give to the players is higher for a decisive game than for a draw in the case of the Bilbao system, while a proof was never shown that a draw is less valuable as a game than a decisive game. A draw can be a much better played game than a win and while it is normal that we give more points to a winner than to one who did not manage to overcome his opponent, I do not see any sense in undervaluing a draw as a game compared to a decisive game. If we value a game 2 in total if it was drawn and 3 if it was a win, then it is discriminatory for players achieving a hard-fought and interesting draw, possibly using a novetly researched for months and while I agree with you that something must be done in order to motivate the players to play more fighting chess, changing the pointing system is not an adequate measure in my opinion and I need proof to change my mind.

A value judgement is always at least partly subjective, but a value judgement used as a scoring system must have a solid objective foundation and while the current system has such a foundation, the proposed changes were founded on the idea to increase the sporting value of chess and they so far were not accompanied with the knowledge we need to see that correct play will not be discriminated, the scoring system will be fair.

"Everybody is free to judge it however they want."

Excuse me, but this was a response to an objective argument and therefore this is invalid as a response. The argument was that in lack of knowledge about the exact evaluation of the starting position it is unreasonable to act like we knew the result and hence we need to share the point equally until we find out the exact evaluation.

"Again, this only matters if you give a different score to a white win vs a black win. There's never been a system used that actually does this."

Your proposal suggested it and I argue with it in the way the points are distributed while I welcome that it keeps the same sum for any potential result. However, Bilbao does not do it. I have given arguments for both principles and yes, the argument given for the first does not apply to the second and vice-versa.

"It seems you are again referring to color or the difference between a white win vs a black win"

No, my point was that if we give 1 point for each player of a drawn game, then the total value of the game is 2. If we give 3 points for the winner of a game and 0 for the loser, then the value of a decisive game is 3. So the Bilbao values a decisive game as it is worth 3 units in total and it values a drawn game as it is worth 2 points in total. This is discriminatory for hard-fought draws.

"Again, this only matters if you give a different score to a white win vs a black win"

It matters if you assign different amounts of points for a draw as well.

"Even if we assume that white has no advantage it would only support that a white win should be worth the same as a black win, it says nothing about why a draw should be worth exactly half a win. "

I did not assume that White has no advantage, quite the contrary: I am objecting against any premature assumptions. Yet, the fact that White's presumed advantage is not proven was used as an argument that the players should get equal amount of points until proven otherwise. It was NOT used as an argument to support the idea that a draw should value half a win. As I have already described several times, this idea is supported by the argument against valuing more a decisive game in total than a draw. The argument was that we need to share the point among the players totalling the same amount, 1=0.5+0.5=1+0=0+1 in this case because otherwise we would value games differently based on results. If we use the Bilbao system, then 3+0=0+3=3>2=1+1 means that a decisive game is better, in terms of value. The cumulative reward we give to the players is higher for a decisive game than for a draw in the case of the Bilbao system, while a proof was never shown that a draw is less valuable as a game than a decisive game. A draw can be a much better played game than a win and while it is normal that we give more points to a winner than to one who did not manage to overcome his opponent, I do not see any sense in undervaluing a draw as a game compared to a decisive game. If we value a game 2 in total if it was drawn and 3 if it was a win, then it is discriminatory for players achieving a hard-fought and interesting draw, possibly using a novetly researched for months and while I agree with you that something must be done in order to motivate the players to play more fighting chess, changing the pointing system is not an adequate measure in my opinion and I need proof to change my mind.

A value judgement is always at least partly subjective, but a value judgement used as a scoring system must have a solid objective foundation and while the current system has such a foundation, the proposed changes were founded on the idea to increase the sporting value of chess and they so far were not accompanied with the knowledge we need to see that correct play will not be discriminated, the scoring system will be fair.

"Everybody is free to judge it however they want."

Excuse me, but this was a response to an objective argument and therefore this is invalid as a response. The argument was that in lack of knowledge about the exact evaluation of the starting position it is unreasonable to act like we knew the result and hence we need to share the point equally until we find out the exact evaluation.

"Again, this only matters if you give a different score to a white win vs a black win. There's never been a system used that actually does this."

Your proposal suggested it and I argue with it in the way the points are distributed while I welcome that it keeps the same sum for any potential result. However, Bilbao does not do it. I have given arguments for both principles and yes, the argument given for the first does not apply to the second and vice-versa.

"It seems you are again referring to color or the difference between a white win vs a black win"

No, my point was that if we give 1 point for each player of a drawn game, then the total value of the game is 2. If we give 3 points for the winner of a game and 0 for the loser, then the value of a decisive game is 3. So the Bilbao values a decisive game as it is worth 3 units in total and it values a drawn game as it is worth 2 points in total. This is discriminatory for hard-fought draws.

"Again, this only matters if you give a different score to a white win vs a black win"

It matters if you assign different amounts of points for a draw as well.

@ lajosarpad 2/2

>> ""at some point you also seem to imply that white has no advantage"

I believe you are mistaken, please show me the exact quote where I implied that, as it was clearly not my intention."

Quote: "until you prove us based on the perfect chess game that White has an advantage."

This implies that you believed white has no advantage. If that's not what you intended then maybe you should be more careful about how you write your comments. Also you keep referring to this issue throughout your writings even though it's only relevant in a system that gives a different score to a white win vs a black win.

>> ""I could not quite follow your logic there because _even if_ white has no advantage it doesn't support your claim, it would only support that a white win should be worth the same as a black win."

I will need to repeat myself again, please, do not assume that repeating the same argument has a purpose to "win" a debate."

As long as you keep saying that 1+1=3 I will keep saying that 1+1=2.

>> "Firstly, I did not state that White does not have an advantage."

I did not say that you did, I said that you implied it. If that was not your intention then maybe you should be more careful about how you write your comments. It would also help if you stayed on topic instead of sidetracking all the time leading to pointless exchanges like this.

>> "Secondly, the lack of knowledge about any advantage in the starting position makes it unfair to not give even points to the drawing players."

Already addressed, see above.

>> "Thirdly, a drawn game should not worth less than a decisive game (1+1=2<3=0+3=3+0) due to the result, as a drawn game might be far more correct, deep and interesting than a decisive game."

Now you are referring to the contents of the game itself, need I repeat that this is subjective? Btw: following this logic would lead us to give more points to a beautiful game and less points to a boring game, the exact opposite of what you're trying to argue for.

>> "It is possible that you simply forgot that you stated that your system makes most sense and reflects the game more accurately, which, if true, means that we need to introduce it. I question the accuracy of this system."

Sidetracking again. It was you who said: "I consider the Bilbao system unsound from philosophical point of view." That's how this whole discussion started and yes I've given alternative examples to illustrate a point. The point being that the Bilbao system is not unsound from a philosophical point of view. Whether or not this means I'm advocating to change the system is entirely beside the point in this discussion.

>> "We should not rely on our subjective feelings, but rather a quantifiable, provable, objective result of rigorous research."

Ok so what's the "quantifiable, provable, objective result of rigorous research" that shows a draw must be worth exactly half a win? And don't say it's "fair" because: "We should not rely on our subjective feelings".

>> ""at some point you also seem to imply that white has no advantage"

I believe you are mistaken, please show me the exact quote where I implied that, as it was clearly not my intention."

Quote: "until you prove us based on the perfect chess game that White has an advantage."

This implies that you believed white has no advantage. If that's not what you intended then maybe you should be more careful about how you write your comments. Also you keep referring to this issue throughout your writings even though it's only relevant in a system that gives a different score to a white win vs a black win.

>> ""I could not quite follow your logic there because _even if_ white has no advantage it doesn't support your claim, it would only support that a white win should be worth the same as a black win."

I will need to repeat myself again, please, do not assume that repeating the same argument has a purpose to "win" a debate."

As long as you keep saying that 1+1=3 I will keep saying that 1+1=2.

>> "Firstly, I did not state that White does not have an advantage."

I did not say that you did, I said that you implied it. If that was not your intention then maybe you should be more careful about how you write your comments. It would also help if you stayed on topic instead of sidetracking all the time leading to pointless exchanges like this.

>> "Secondly, the lack of knowledge about any advantage in the starting position makes it unfair to not give even points to the drawing players."

Already addressed, see above.

>> "Thirdly, a drawn game should not worth less than a decisive game (1+1=2<3=0+3=3+0) due to the result, as a drawn game might be far more correct, deep and interesting than a decisive game."

Now you are referring to the contents of the game itself, need I repeat that this is subjective? Btw: following this logic would lead us to give more points to a beautiful game and less points to a boring game, the exact opposite of what you're trying to argue for.

>> "It is possible that you simply forgot that you stated that your system makes most sense and reflects the game more accurately, which, if true, means that we need to introduce it. I question the accuracy of this system."

Sidetracking again. It was you who said: "I consider the Bilbao system unsound from philosophical point of view." That's how this whole discussion started and yes I've given alternative examples to illustrate a point. The point being that the Bilbao system is not unsound from a philosophical point of view. Whether or not this means I'm advocating to change the system is entirely beside the point in this discussion.

>> "We should not rely on our subjective feelings, but rather a quantifiable, provable, objective result of rigorous research."

Ok so what's the "quantifiable, provable, objective result of rigorous research" that shows a draw must be worth exactly half a win? And don't say it's "fair" because: "We should not rely on our subjective feelings".

@ lajosarpad 1/2

>> "In lack of factual knowledge about the exact evaluation of the starting position we can not assume that one of the players stands better, yet, besides that we would need the amount as well for the perfect scoring system. The current principle ignores any differences when sharing the point in lack of knowledge. [...] Until then I object against non-equal division, since it not only assumes that one of the players has an advantage, it even estimates the quantity of that advantage."

I already addressed this in my previous comment.

Even if we assume that white has no advantage it would only support that a white win should be worth the same as a black win, it says nothing about why a draw should be worth exactly half a win.

>> "While dividing the point equally can be proven to be fair, as equal share is a fair act among human beings [...] I consider giving less points in total for a draw than for a win [...] unfair"

Everybody is free to judge it however they want. I never said this is wrong per se. My whole point from the very beginning has always been that it's a value judgement and therefore subjective. You may value a draw worth half a win, somebody else may value it differently, as in the Bilbao system.

>> "1. We need to avoid assuming that any of the players has an advantage and its amount unless we get a proof, therefore we need to share the points equally in lack of knowledge about the exact value of the starting position."

Again, this only matters if you give a different score to a white win vs a black win. There's never been a system used that actually does this. So this issue is irrelevant if we're talking about the Bilbao system. Never the less it wouldn't be unreasonable because there's a common consensus that white has an advantage as shown by statistics.

>> "2. Since we cannot estimate the real value of a game based solely on the result (drawn or decisive), we need to value all the games the same."

It seems you are again referring to color or the difference between a white win vs a black win. Later on you refer to this sentence saying a draw should be worth half a win. But again the difference between a draw and a win has nothing to do with color.

>> "While point 1 can be argued on the principles of using the statistics, I find this bogus, as in this case we can not be satisfied with anything less than a proof"

Again, this only matters if you give a different score to a white win vs a black win. Statistics are more than enough to make this a reasonable assumption however. The exact amount is debatable but less important because all these valuations are subjective anyway. You could start debating the Elo rating formula the same way. How big should the K-factor be? There is no provable "right" answer. But it does not really matter because ultimately the rules are the same for everybody.

>> ""there's no real reason why this should be the case and you still haven't given that reason"

Unfortunately I have to repeat that I have given the reason."

No you had not. Only in your last comment did you mention fairness. But fairness is subjective.

>> ""I have merely pointed out that different valuations -as in the Bilbao system- are also possible and valid. "

Nope."

Err... yes. I know what I said and yes that's what I said. You can simply go back to my previous comments to see. Different valuations are possible and valid if they are based on reasonable assumptions.

>> "We cannot accept a hypothesis as a scientific fact unless it is proven. And this does not mean that the opposite of your assumption is true. It means that according to current knowledge it is premature to state opinions as facts."

I would argue that statistics are more than enough to make it a reasonable assumption that white has an advantage.

>> "In lack of factual knowledge about the exact evaluation of the starting position we can not assume that one of the players stands better, yet, besides that we would need the amount as well for the perfect scoring system. The current principle ignores any differences when sharing the point in lack of knowledge. [...] Until then I object against non-equal division, since it not only assumes that one of the players has an advantage, it even estimates the quantity of that advantage."

I already addressed this in my previous comment.

Even if we assume that white has no advantage it would only support that a white win should be worth the same as a black win, it says nothing about why a draw should be worth exactly half a win.

>> "While dividing the point equally can be proven to be fair, as equal share is a fair act among human beings [...] I consider giving less points in total for a draw than for a win [...] unfair"

Everybody is free to judge it however they want. I never said this is wrong per se. My whole point from the very beginning has always been that it's a value judgement and therefore subjective. You may value a draw worth half a win, somebody else may value it differently, as in the Bilbao system.

>> "1. We need to avoid assuming that any of the players has an advantage and its amount unless we get a proof, therefore we need to share the points equally in lack of knowledge about the exact value of the starting position."

Again, this only matters if you give a different score to a white win vs a black win. There's never been a system used that actually does this. So this issue is irrelevant if we're talking about the Bilbao system. Never the less it wouldn't be unreasonable because there's a common consensus that white has an advantage as shown by statistics.

>> "2. Since we cannot estimate the real value of a game based solely on the result (drawn or decisive), we need to value all the games the same."

It seems you are again referring to color or the difference between a white win vs a black win. Later on you refer to this sentence saying a draw should be worth half a win. But again the difference between a draw and a win has nothing to do with color.

>> "While point 1 can be argued on the principles of using the statistics, I find this bogus, as in this case we can not be satisfied with anything less than a proof"

Again, this only matters if you give a different score to a white win vs a black win. Statistics are more than enough to make this a reasonable assumption however. The exact amount is debatable but less important because all these valuations are subjective anyway. You could start debating the Elo rating formula the same way. How big should the K-factor be? There is no provable "right" answer. But it does not really matter because ultimately the rules are the same for everybody.

>> ""there's no real reason why this should be the case and you still haven't given that reason"

Unfortunately I have to repeat that I have given the reason."

No you had not. Only in your last comment did you mention fairness. But fairness is subjective.

>> ""I have merely pointed out that different valuations -as in the Bilbao system- are also possible and valid. "

Nope."

Err... yes. I know what I said and yes that's what I said. You can simply go back to my previous comments to see. Different valuations are possible and valid if they are based on reasonable assumptions.

>> "We cannot accept a hypothesis as a scientific fact unless it is proven. And this does not mean that the opposite of your assumption is true. It means that according to current knowledge it is premature to state opinions as facts."

I would argue that statistics are more than enough to make it a reasonable assumption that white has an advantage.

@fons 2/2

"at some point you also seem to imply that white has no advantage"

I believe you are mistaken, please show me the exact quote where I implied that, as it was clearly not my intention.

"and that this has something to do with why a draw should be worth exactly half a win"

We do not know whether anyone has an advantage, if so, who is it and by what amount. Since we do not know about an advantage, yet alone about its amount it is invalid to use the results we have never achieved by rigorous researching to change the scoring system.

"I could not quite follow your logic there because _even if_ white has no advantage it doesn't support your claim, it would only support that a white win should be worth the same as a black win."

I will need to repeat myself again, please, do not assume that repeating the same argument has a purpose to "win" a debate. Firstly, I did not state that White does not have an advantage. Secondly, the lack of knowledge about any advantage in the starting position makes it unfair to not give even points to the drawing players. Thirdly, a drawn game should not worth less than a decisive game (1+1=2<3=0+3=3+0) due to the result, as a drawn game might be far more correct, deep and interesting than a decisive game.

"I have never done that, I have merely given alternative examples to illustrate a point. "

This statement contradicts with your other statement:

"I don't see what's philosophically unsound about this. Better performance; more points.

0 loss with white

1 loss with black

2 draw with white

3 draw with black

4 win with white

5 win with black

Imo this makes the most sense and reflects the game more accurately."

Source: http://en.chessbase.com/post/moscow-grand-prix-r01

Do not misunderstood me. I do not state that you lied, it would not be elegant from my part and I intend to be constructive in a debate even when insulted. It is possible that you simply forgot that you stated that your system makes most sense and reflects the game more accurately, which, if true, means that we need to introduce it. I question the accuracy of this system.

"I have already given my reasoning multiple times. You _still_ haven't explained why a draw must be worth exactly half a win."

I repeat, I have given the reason. You do not have to agree with it, but it is disrespectful from your part if you deny the fact that the reason has been given several times.

"how much we value a draw compared to a win depends on value judgements, it can be half a win or it can be something else. "

I completely agree with you on this point. I am adding to this that a change, any change in our value judgement must have a strong support, preferably a proof that the change will result in a better system. We should not rely on our subjective feelings, but rather a quantifiable, provable, objective result of rigorous research.

I repeat my offer: let's end this discussion, it has been poisoned by insults which were never revoked.

"at some point you also seem to imply that white has no advantage"

I believe you are mistaken, please show me the exact quote where I implied that, as it was clearly not my intention.

"and that this has something to do with why a draw should be worth exactly half a win"

We do not know whether anyone has an advantage, if so, who is it and by what amount. Since we do not know about an advantage, yet alone about its amount it is invalid to use the results we have never achieved by rigorous researching to change the scoring system.

"I could not quite follow your logic there because _even if_ white has no advantage it doesn't support your claim, it would only support that a white win should be worth the same as a black win."

I will need to repeat myself again, please, do not assume that repeating the same argument has a purpose to "win" a debate. Firstly, I did not state that White does not have an advantage. Secondly, the lack of knowledge about any advantage in the starting position makes it unfair to not give even points to the drawing players. Thirdly, a drawn game should not worth less than a decisive game (1+1=2<3=0+3=3+0) due to the result, as a drawn game might be far more correct, deep and interesting than a decisive game.

"I have never done that, I have merely given alternative examples to illustrate a point. "

This statement contradicts with your other statement:

"I don't see what's philosophically unsound about this. Better performance; more points.

0 loss with white

1 loss with black

2 draw with white

3 draw with black

4 win with white

5 win with black

Imo this makes the most sense and reflects the game more accurately."

Source: http://en.chessbase.com/post/moscow-grand-prix-r01

Do not misunderstood me. I do not state that you lied, it would not be elegant from my part and I intend to be constructive in a debate even when insulted. It is possible that you simply forgot that you stated that your system makes most sense and reflects the game more accurately, which, if true, means that we need to introduce it. I question the accuracy of this system.

"I have already given my reasoning multiple times. You _still_ haven't explained why a draw must be worth exactly half a win."

I repeat, I have given the reason. You do not have to agree with it, but it is disrespectful from your part if you deny the fact that the reason has been given several times.

"how much we value a draw compared to a win depends on value judgements, it can be half a win or it can be something else. "

I completely agree with you on this point. I am adding to this that a change, any change in our value judgement must have a strong support, preferably a proof that the change will result in a better system. We should not rely on our subjective feelings, but rather a quantifiable, provable, objective result of rigorous research.

I repeat my offer: let's end this discussion, it has been poisoned by insults which were never revoked.

@fons 1/2

I don't "claim" that White has no advantage. Not believing your factual assumption that White has an advantage is not equivalent in stating the opposite at all. White has been more successful so far, which is confirmed via statistical means, which is a foundation for your hypothesis, but it is not a proof. In lack of factual knowledge about the exact evaluation of the starting position we can not assume that one of the players stands better, yet, besides that we would need the amount as well for the perfect scoring system. The current principle ignores any differences when sharing the point in lack of knowledge. If we get the necessary knowledge, then we will need to revisit this issue. Until then I object against non-equal division, since it not only assumes that one of the players has an advantage, it even estimates the quantity of that advantage. While dividing the point equally can be proven to be fair, as equal share is a fair act among human beings unless we have factual knowledge which shows the optimal sharing ratio. I am not assuming anything, I merely state that we lack the knowledge here and therefore we should avoid doing assumptions and risking to introduce an unfair system.

The sum of the scores of a game yields the total value of the game. I consider giving less points in total for a draw than for a win (1+1=2 in case of a draw and 3+0=0+3=3 in case of a decided game) unfair, as it provably unfavors drawn games by reducing its total value. In my opinion it is unreasonable to give a higher value to a win by default than a fightful, artistic draw, to give you an extreme example.

So I favor the current scoring system and my reasoning is:

1. We need to avoid assuming that any of the players has an advantage and its amount unless we get a proof, therefore we need to share the points equally in lack of knowledge about the exact value of the starting position.

2. Since we cannot estimate the real value of a game based solely on the result (drawn or decisive), we need to value all the games the same.

While point 1 can be argued on the principles of using the statistics, I find this bogus, as in this case we can not be satisfied with anything less than a proof, as relying on a finite statistic's pattern we will need to periodically revisit the matter and refresh the statistics and change the scoring system, which will make the scoring system periodically changing and getting more and more confusing.

On the other hand, one can argue with point 2 validly by suggesting that a game's total value should be the average of its players. I find this argument valid, but it will encourage draws on the top boards, so I do not favor this argument due to its affect on the sporting value.

"there's no real reason why this should be the case and you still haven't given that reason"

Unfortunately I have to repeat that I have given the reason. There is nothing wrong if you do not accept the reason I have given, but I find it disrespectful from your part towards me and all the readers of this debate to deny this fact.

"I have merely pointed out that different valuations -as in the Bilbao system- are also possible and valid. "

Nope, you used insults as well and still not apologized for those.

"There's a common consensus that white has an advantage, this is also shown by statistics."

There was a common consensus that the Sun circles around the Earth and it was also shown by the empirical experience that it rises on the east and sets on the west. While I can understand the reason as of why people believed that, it was an unproven assumption, just like yours. We cannot accept a hypothesis as a scientific fact unless it is proven. And this does not mean that the opposite of your assumption is true. It means that according to current knowledge it is premature to state opinions as facts.

I don't "claim" that White has no advantage. Not believing your factual assumption that White has an advantage is not equivalent in stating the opposite at all. White has been more successful so far, which is confirmed via statistical means, which is a foundation for your hypothesis, but it is not a proof. In lack of factual knowledge about the exact evaluation of the starting position we can not assume that one of the players stands better, yet, besides that we would need the amount as well for the perfect scoring system. The current principle ignores any differences when sharing the point in lack of knowledge. If we get the necessary knowledge, then we will need to revisit this issue. Until then I object against non-equal division, since it not only assumes that one of the players has an advantage, it even estimates the quantity of that advantage. While dividing the point equally can be proven to be fair, as equal share is a fair act among human beings unless we have factual knowledge which shows the optimal sharing ratio. I am not assuming anything, I merely state that we lack the knowledge here and therefore we should avoid doing assumptions and risking to introduce an unfair system.

The sum of the scores of a game yields the total value of the game. I consider giving less points in total for a draw than for a win (1+1=2 in case of a draw and 3+0=0+3=3 in case of a decided game) unfair, as it provably unfavors drawn games by reducing its total value. In my opinion it is unreasonable to give a higher value to a win by default than a fightful, artistic draw, to give you an extreme example.

So I favor the current scoring system and my reasoning is:

1. We need to avoid assuming that any of the players has an advantage and its amount unless we get a proof, therefore we need to share the points equally in lack of knowledge about the exact value of the starting position.

2. Since we cannot estimate the real value of a game based solely on the result (drawn or decisive), we need to value all the games the same.

While point 1 can be argued on the principles of using the statistics, I find this bogus, as in this case we can not be satisfied with anything less than a proof, as relying on a finite statistic's pattern we will need to periodically revisit the matter and refresh the statistics and change the scoring system, which will make the scoring system periodically changing and getting more and more confusing.

On the other hand, one can argue with point 2 validly by suggesting that a game's total value should be the average of its players. I find this argument valid, but it will encourage draws on the top boards, so I do not favor this argument due to its affect on the sporting value.

"there's no real reason why this should be the case and you still haven't given that reason"

Unfortunately I have to repeat that I have given the reason. There is nothing wrong if you do not accept the reason I have given, but I find it disrespectful from your part towards me and all the readers of this debate to deny this fact.

"I have merely pointed out that different valuations -as in the Bilbao system- are also possible and valid. "

Nope, you used insults as well and still not apologized for those.

"There's a common consensus that white has an advantage, this is also shown by statistics."

There was a common consensus that the Sun circles around the Earth and it was also shown by the empirical experience that it rises on the east and sets on the west. While I can understand the reason as of why people believed that, it was an unproven assumption, just like yours. We cannot accept a hypothesis as a scientific fact unless it is proven. And this does not mean that the opposite of your assumption is true. It means that according to current knowledge it is premature to state opinions as facts.

@ lajosarpad

You say that the total number of points given to the outcome of a game should always be the same. (So ½+½=1 or 1+0=1) Maybe this gives a neat appearance but there's no real reason why this should be the case and you still haven't given that reason.

You say we _need_ to to this, you don't say _why_ we need to do this.

The 0-½-1 system is not fundamentally wrong, I have merely pointed out that different valuations -as in the Bilbao system- are also possible and valid.

There's a common consensus that white has an advantage, this is also shown by statistics. But anyway, at some point you also seem to imply that white has no advantage and that this has something to do with why a draw should be worth exactly half a win. I could not quite follow your logic there because _even if_ white has no advantage it doesn't support your claim, it would only support that a white win should be worth the same as a black win.

>> "You state that you want to change the current system,"

I have never done that, I have merely given alternative examples to illustrate a point.

>> "About onus of proof ... Shifting_the_burden"

I have already given my reasoning multiple times. You _still_ haven't explained why a draw must be worth exactly half a win.

To summarize my point again: how much we value a draw compared to a win depends on value judgements, it can be half a win or it can be something else.

You say that the total number of points given to the outcome of a game should always be the same. (So ½+½=1 or 1+0=1) Maybe this gives a neat appearance but there's no real reason why this should be the case and you still haven't given that reason.

You say we _need_ to to this, you don't say _why_ we need to do this.

The 0-½-1 system is not fundamentally wrong, I have merely pointed out that different valuations -as in the Bilbao system- are also possible and valid.

There's a common consensus that white has an advantage, this is also shown by statistics. But anyway, at some point you also seem to imply that white has no advantage and that this has something to do with why a draw should be worth exactly half a win. I could not quite follow your logic there because _even if_ white has no advantage it doesn't support your claim, it would only support that a white win should be worth the same as a black win.

>> "You state that you want to change the current system,"

I have never done that, I have merely given alternative examples to illustrate a point.

>> "About onus of proof ... Shifting_the_burden"

I have already given my reasoning multiple times. You _still_ haven't explained why a draw must be worth exactly half a win.

To summarize my point again: how much we value a draw compared to a win depends on value judgements, it can be half a win or it can be something else.

@fons

I have given you the reason. The system is philosophically sound, proven by being able to describe its logic, a thing which I have never seen demonstrated for the Bilbao scoring system, where I have never seen a plausible reason given for providing 3 for a win and 1 for a draw. And that system can be easily hacked, just like yours, which is actually disproving at least their usability.

"What's the logical explanation that a win must be exactly equal to two draws?"

I have described the reason why the points given to the players should in total equal the amount of points given to the winner. 0.5 + 0.5 = 1. Or 0.3 + 0.7 = 1. Or 1 + 2 = 3. We need to distribute the points, otherwise the efforts of the players playing a drawn game in total would value less than the efforts of the players playing a decisive game. We should never punish fighting draws this way, unless we have a VERY good reason to do so. The other part is the way we distribute that point. If you can prove that the perfect game is a White win, then it makes sense to give more points to Black in case of a draw, but not violating the principle that a draw in total should value the same as a decisive game in total.

"Repeating the same thing does not make it true or show that I am wrong."

I have repeated my same argument when you repeatedly addressed the same issue. I did not want to show you are wrong by repeating my answer, as I am convinced my answer was already effective in doing that. I was just being polite, as I am now, when I am still talking with you after the insults and tone you have used. I find it very strange that you are repeating the same question (when the answer was given), yet you envision that I try to make something true by repeating it, when both of us perfectly know that it was you who stated that I just explained the system. I do not think it is my fault that by explaining the system's logic I have shown that the system HAS an explainable logic did not reach your thought process. Yes, I prefer to divide the point equally in case of a draw until you prove us based on the perfect chess game that White has an advantage. In that case you will need to measure that advantage and that should form the foundation of the change of the scoring system, not a random, unscientific idea. We need to at least attempt to provide justice when we come up with a change, or prove that the change brings us closer to justice than the thing we currently have. The other dimension is the correctness of the games. I would not be surprised if by giving less score to White in a draw we would significantly reduce White's performance.

And last but not least: You state that you want to change the current system, so you are the one who has to show all the proofs, not the ones skeptical about your idea.

About onus of proof (that the one who has a statement has to prove its validness, not the others its invalidness in order to accept the statement) kindly read the following articles:

http://thelawdictionary.org/onus-of-proof/

http://rationalwiki.org/wiki/Burden_of_proof

https://en.wikipedia.org/wiki/Argument_from_ignorance

https://en.wikipedia.org/wiki/Philosophical_burden_of_proof#Shifting_the_burden_of_proof

In particular read about shifting the burden

http://rationalwiki.org/wiki/Burden_of_proof#Shifting_the_burden

which is exactly what you do. Yet, when you use these fallacies and I politely point them out, you tell me that rational thought does not seem to be one of my strong points. I would really like to avoid allocating time into this conversation. Let's finish it, it will be better for you as well.

I have given you the reason. The system is philosophically sound, proven by being able to describe its logic, a thing which I have never seen demonstrated for the Bilbao scoring system, where I have never seen a plausible reason given for providing 3 for a win and 1 for a draw. And that system can be easily hacked, just like yours, which is actually disproving at least their usability.

"What's the logical explanation that a win must be exactly equal to two draws?"

I have described the reason why the points given to the players should in total equal the amount of points given to the winner. 0.5 + 0.5 = 1. Or 0.3 + 0.7 = 1. Or 1 + 2 = 3. We need to distribute the points, otherwise the efforts of the players playing a drawn game in total would value less than the efforts of the players playing a decisive game. We should never punish fighting draws this way, unless we have a VERY good reason to do so. The other part is the way we distribute that point. If you can prove that the perfect game is a White win, then it makes sense to give more points to Black in case of a draw, but not violating the principle that a draw in total should value the same as a decisive game in total.

"Repeating the same thing does not make it true or show that I am wrong."

I have repeated my same argument when you repeatedly addressed the same issue. I did not want to show you are wrong by repeating my answer, as I am convinced my answer was already effective in doing that. I was just being polite, as I am now, when I am still talking with you after the insults and tone you have used. I find it very strange that you are repeating the same question (when the answer was given), yet you envision that I try to make something true by repeating it, when both of us perfectly know that it was you who stated that I just explained the system. I do not think it is my fault that by explaining the system's logic I have shown that the system HAS an explainable logic did not reach your thought process. Yes, I prefer to divide the point equally in case of a draw until you prove us based on the perfect chess game that White has an advantage. In that case you will need to measure that advantage and that should form the foundation of the change of the scoring system, not a random, unscientific idea. We need to at least attempt to provide justice when we come up with a change, or prove that the change brings us closer to justice than the thing we currently have. The other dimension is the correctness of the games. I would not be surprised if by giving less score to White in a draw we would significantly reduce White's performance.

And last but not least: You state that you want to change the current system, so you are the one who has to show all the proofs, not the ones skeptical about your idea.

About onus of proof (that the one who has a statement has to prove its validness, not the others its invalidness in order to accept the statement) kindly read the following articles:

http://thelawdictionary.org/onus-of-proof/

http://rationalwiki.org/wiki/Burden_of_proof

https://en.wikipedia.org/wiki/Argument_from_ignorance

https://en.wikipedia.org/wiki/Philosophical_burden_of_proof#Shifting_the_burden_of_proof

In particular read about shifting the burden

http://rationalwiki.org/wiki/Burden_of_proof#Shifting_the_burden

which is exactly what you do. Yet, when you use these fallacies and I politely point them out, you tell me that rational thought does not seem to be one of my strong points. I would really like to avoid allocating time into this conversation. Let's finish it, it will be better for you as well.

@ lajosarpad: Repeating the same thing does not make it true or show that I am wrong.

>>"I have given you the reason"

No you did not, you just described the system.

>>"and I doubt that given 3 points for a win, the 1 point for each of the drawers (1+1=2, 1+1<>3) would qualify to be a distribution,"

Whether you call it a distribution or something else is entirely beside the point, it's just semantics.

>>"as a point is gone without a logical explanation involving purely chess arguments."

What's the logical explanation that a win must be exactly equal to two draws?

Saying: "that's how it is" is not an explanation.

As I already argued; how many points you give to the outcome of the game depends on value judgements. In the case of the Bilbao system they valued a win as being worth more than two draws.

>>"I have given you the reason"

No you did not, you just described the system.

>>"and I doubt that given 3 points for a win, the 1 point for each of the drawers (1+1=2, 1+1<>3) would qualify to be a distribution,"

Whether you call it a distribution or something else is entirely beside the point, it's just semantics.

>>"as a point is gone without a logical explanation involving purely chess arguments."

What's the logical explanation that a win must be exactly equal to two draws?

Saying: "that's how it is" is not an explanation.

As I already argued; how many points you give to the outcome of the game depends on value judgements. In the case of the Bilbao system they valued a win as being worth more than two draws.

@fons

I have given you the reason and I doubt that given 3 points for a win, the 1 point for each of the drawers (1+1=2, 1+1<>3) would qualify to be a distribution, as a point is gone without a logical explanation involving purely chess arguments. However, I really do not want to continue the debate with you, as I am not really willing to discuss things with people who are insulting their debating partners as you did:

"No offense but reading skills and rational thought do not seem to be your strong points.

Or are you deliberately misunderstanding everything as a way of trolling?"

Source: http://en.chessbase.com/post/moscow-grand-prix-r01

I have given you the reason and I doubt that given 3 points for a win, the 1 point for each of the drawers (1+1=2, 1+1<>3) would qualify to be a distribution, as a point is gone without a logical explanation involving purely chess arguments. However, I really do not want to continue the debate with you, as I am not really willing to discuss things with people who are insulting their debating partners as you did:

"No offense but reading skills and rational thought do not seem to be your strong points.

Or are you deliberately misunderstanding everything as a way of trolling?"

Source: http://en.chessbase.com/post/moscow-grand-prix-r01

@ lajosarpad >> "The reason is that a point is given for a game. If it is decisive, then it is given to the winner. If not, then it is shared between the players. That point, shared or given in full to the winner is representing the game."

You are not giving reasons, you are just describing the system.

Which is understandable because there are no reasons why a single win should be worth exactly two draws, it's just what we are used to. It's arbitrary and depends on value judgements: for example how much you value a win compared with a draw, or whether or not you value a win with black more than a win with white. You can have different systems with different distributions that all make perfect sense. You may like one more than the other as a personal preference, but others are not necessarily "unsound" or illogical.

The classical system distributes 1 point total and distinguishes 3 ways to share that point between the players:

0 loss

½ draw

1 win.

The Bilbao system distributes 3 points maximum and distinguishes 3 ways to share those points between the players:

0 loss

1 draw

3 win.

In a comment on the article of the first round I gave an example that distributes 5 points total and distinguishes 6 ways to share that point between the players:

0 loss with white

1 loss with black

2 draw with white

3 draw with black

4 win with white

5 win with black

My example is the same as the classical system but split for color and both always distribute the same amount of points.

The Bilbao system does not always distribute the same amount of points as a way to favor wins over draws.

All these systems are reasonable and make logical sense.

You are not giving reasons, you are just describing the system.

Which is understandable because there are no reasons why a single win should be worth exactly two draws, it's just what we are used to. It's arbitrary and depends on value judgements: for example how much you value a win compared with a draw, or whether or not you value a win with black more than a win with white. You can have different systems with different distributions that all make perfect sense. You may like one more than the other as a personal preference, but others are not necessarily "unsound" or illogical.

The classical system distributes 1 point total and distinguishes 3 ways to share that point between the players:

0 loss

½ draw

1 win.

The Bilbao system distributes 3 points maximum and distinguishes 3 ways to share those points between the players:

0 loss

1 draw

3 win.

In a comment on the article of the first round I gave an example that distributes 5 points total and distinguishes 6 ways to share that point between the players:

0 loss with white

1 loss with black

2 draw with white

3 draw with black

4 win with white

5 win with black

My example is the same as the classical system but split for color and both always distribute the same amount of points.

The Bilbao system does not always distribute the same amount of points as a way to favor wins over draws.

All these systems are reasonable and make logical sense.

@Fons

"there's no reason why a single win should be worth exactly two draws"

The reason is that a point is given for a game. If it is decisive, then it is given to the winner. If not, then it is shared between the players. That point, shared or given in full to the winner is representing the game. I have never seen such a plausible explanation for the Bilbao system. It is explained by the desire to support fighting chess, but that is a desire of the outsiders and do not forget that this will lead to less than correct chess. You can watch rapid chess if you want to see decisive games at the expense of precision.

"there's no reason why a single win should be worth exactly two draws"

The reason is that a point is given for a game. If it is decisive, then it is given to the winner. If not, then it is shared between the players. That point, shared or given in full to the winner is representing the game. I have never seen such a plausible explanation for the Bilbao system. It is explained by the desire to support fighting chess, but that is a desire of the outsiders and do not forget that this will lead to less than correct chess. You can watch rapid chess if you want to see decisive games at the expense of precision.

>> lajosarpad: "I consider the Bilbao system unsound from philosophical point of view."

As long as the scoring system as a whole makes logical sense I don't see why that would be the case.

A single win should be worth more than a single draw, that's what matters. How much more exactly is subjective and there's no reason why a single win should be worth exactly two draws. It might seem natural but it's just what we're used to. There's also nothing wrong with it, ultimately it's a subjective evaluation.

As long as the scoring system as a whole makes logical sense I don't see why that would be the case.

A single win should be worth more than a single draw, that's what matters. How much more exactly is subjective and there's no reason why a single win should be worth exactly two draws. It might seem natural but it's just what we're used to. There's also nothing wrong with it, ultimately it's a subjective evaluation.

I don't believe about this virus thing when I saw the table having the name of Kaspersky. That alone would drive the virus away.

Giri can draw anybody

Financial incentives should be given for players with more decisive results. A player who achieves 4 wins, 4 losses (1 draw) should not be treated the same way as a player who goes 9 draws. If there was financial incentive to win games, you'd see the players play differently. I'll make y'all a deal: arrange for me to hit a 1/2 billion dollar American lottery, and you'll see the best darned Grand Prix you've ever seen. The players will be punching each other to win a game.

Probably the format is deeply flawed. 18 players playing a 9 round Swiss is not a normal tournament. Any player starting with a couple of wins is guaranteed to play the strongest (most in form) players for the whole tournament. Starting with draws and getting the wins later allows for much easier opponents (and energy left for the end).

The same players seem to be fighting just fine in other formats, so I think changing the format is the solution for the GP.

Of course the Sofia rule would help as well.

The same players seem to be fighting just fine in other formats, so I think changing the format is the solution for the GP.

Of course the Sofia rule would help as well.

I consider the Bilbao system unsound from philosophical point of view. The Sofia Rules make sense, however, they are forcing the players to play some boring positions where they are not able to repeat the position. Maybe a clause in the contract forcing players to give a lecture to the audience would compensate for non-games.

3 decisive results in 18 games of chess... 83.34% draw rate. Everyone is "under the weather"... are you kidding me? It reminds me of what the Russians did back in the day (pre-arranged draw results) to save their energy. This is why chess will never be mainstream. I'd rather watch grass grow.

"Salem didn't give declining the offer a second thought." This phrase actually means that he declined the draw offer, without questioning his decision. But it seems you meant to say that he did accept the draw offer.

... and what happened to giving 3 points for a win, rather than 2, to encourage taking chances and punish draw seekers? That, too, was the wave of the future not long ago.

So what happened to the "New Classical" time control? That, like other innovations in the chess world that led to palpable improvements in the number of fighting games (football scoring, et al.), seems to have already been kicked to the curb.....In favor of traditional classical chess, and traditional non-games in elite events

"Ah, the Wave of the Future. It's always washing up somewhere"

"Ah, the Wave of the Future. It's always washing up somewhere"

1