10/3/2017 – Or a 'maths' break if you will. Try this on for size: 1+2+3+3 …. =-1/12 (the sum of all natural numbers equals -1/12). Wait what? Sounds like a joke, yet it is actually mathematical practise. How and why this is possible is explained in a fun video by mathematician Brady Haran.
Winning starts with what you know
The new version 18 offers completely new possibilities for chess training and analysis: playing style analysis, search for strategic themes, access to 6 billion Lichess games, player preparation by matching Lichess games, download Chess.com games with built-in API, built-in cloud engine and much more.
Winning starts with what you know The new version 18 offers completely new possibilities for chess training and analysis: playing style analysis, search for strategic themes, access to 6 billion Lichess games, player preparation by matching Lichess games, download Chess.com games with built-in API, built-in cloud engine and much more.
Looking for a realistic way to play for a win with Black against 1.e4 without taking unnecessary risks? The Taimanov Sicilian is a reliable system, and hence one of the best options out there!
€49.90
Math between two Chess games
Ever been bored between two chess games? Well, how about calculating a few huge sums. One can for example identify every chessboard square with one number, such as a1 with 1, a2 with 2 … b1 with 9 etc. Then let's sum them all up. If we do it correctly, the sum 1+2+3...+64 will yield 2080.
The nine year old math genius Carl Friedrich Gauß, who was to become one of the most famous mathmaticians of all times, had to do a similar problem once in school. The class was asked by the teacher to add up all numbers to 100. Gauß only needed a minute to come up with the correct answer. His trick: pair up 100 with 1, then 99 with 2 and so forth, and you will receive 50 packages of equal size, namely 101. 50*101=5050. Doesn't make me want to switch places with his teacher.
In fact, this is an instance of a general formula. If one adds up n natural numbers, the sum will always yield n*(n+1)/2, such as for n=100: 100*101/2=50*101=5050.
So if anyone is enthusiastic about this and the break between two chess games long enough: give n a go! It sure will seem as if with increasing n, this product should get ever larger. But does it?
Above: Carl Friedrich Gauß portrait published in Astronomische Nachrichten 1828
Not if modern mathematics is right!
In fact, one can show that the sum of infinitely many natural numbers is not infinite, but can be set equal to -1/12! So 1+2+3+4 … = -1/12. This is not a joke, but rather based on the mathematical theory of analytical continuation.
Two mathmaticians of the Numberphile-Youtube-Channel hosted by Brady Haran show why this is true:
The entire theory is based on ideas by Bernhard Riemann (19th century) und Leonhard Euler (18th century). Both were frustrated with the fact that some sums simply seem to yield infinity, and this escapes our understanding and stops us from learning anything about such sums. The sums in some way act "not well behaved", as mathmaticians put it. This needed to be changed.
So Riemann and Euler looked at certain sums, which were well behaved in some areas but not in others. In fact, they then found a way to somehow transfer the good behavior into the badly behaving areas.
One such sum is the so called Riemann Zeta-Function. It is defined as the sum 1 + 1 / 2^s + 1 / 3^s + ..... . s is a so called complex number.
This sum has well-behaved areas, such as at s=2. If you add all inverse squares 1+1/2^2+1/3^2 … it can be shown that the sum converges towards pi^2/6. This may seem a surprising value, yet it is finite and thus the sum is well-behaved there.
But there is a problem for s=-1. For this, we find 1+1/2^(-1)+1/3^(-2)+.... = 1+2+3+ … which is just the sum of all natural numbers which caused us a head ache due to its seeming divergency towards infinity.
The trick: The Zeta-Function can be written as a very complicated looking mathematical function:
If one now assumes that this function, which is so well behaved for certain s, can be — somehow — also anayltically evaluated in "bad" values of s, then one can simply insert s=-1 into the formula and arrive at: -1/12.
More than a game
This trick is not only mathematically sound and can be explained much better than by this short article. It also is useful in physics! For example, the sum 1 + 2 + 3 + .... appears in vacuum physics when calculating the force between two plates — the so called Casimir force. There, the minus in front of 1/12 even predicts an attraction, which can be observed. So it's much more than just a mathematical game.
We hope, that nobody has a break between two chess games which is long and boring enough to actually reach -1/12. But then, maybe some of you are interested to learn more about number theory. To those brave readers: dare to use the break between games to visit the really great youtube channel "Numberphile" and enjoy.
Correction October 4: The general formula given in the third paragraph is n(n+1)/2 not over s.
Vera SpillnerQuantum physicist, polyglot and violinist. Earned her PhD at the Institut für Philosophie in Bonn, studied quantum physics (special area of expertise: string theory) at the Institute for Theoretical Physics in Heidelberg.
Rossolimo-Moscow Powerbase 2025 is a database and contains a total of 10950 games from Mega 2025 and the Correspondence Database 2024, of which 612 are annotated.
The greater part of the material on which the Rossolimo/Moscow Powerbook 2025 is based comes from the engine room of playchess.com: 263.000 games. This imposing amount is supplemented by some 50 000 games from Mega and from Correspondence Chess.
Focus on the Sicilian: Opening videos on the Najdorf Variation with 6.h3 e5 7.Nb3 (Luis Engel) and the Taimanov Variation with 7.Qf3 (Nico Zwirs). ‘Lucky bag’ with 38 analyses by Anish Giri, Surya Ganguly, Abhijeet Gupta, Yannick Pelletier and many more.
Throughout the video course, Sasikran shows various examples from his career to explain sacrifices for initiative, an attack, a better pawn structure and much more.
In this insightful video course, Grandmaster David Navara shares practical advice on when to calculate deeply in a position — and just as importantly, when not to.
€19.90
We use cookies and comparable technologies to provide certain functions, to improve the user experience and to offer interest-oriented content. Depending on their intended use, analysis cookies and marketing cookies may be used in addition to technically required cookies. Here you can make detailed settings or revoke your consent (if necessary partially) with effect for the future. Further information can be found in our data protection declaration.
Pop-up for detailed settings
We use cookies and comparable technologies to provide certain functions, to improve the user experience and to offer interest-oriented content. Depending on their intended use, cookies may be used in addition to technically required cookies, analysis cookies and marketing cookies. You can decide which cookies to use by selecting the appropriate options below. Please note that your selection may affect the functionality of the service. Further information can be found in our privacy policy.
Technically required cookies
Technically required cookies: so that you can navigate and use the basic functions and store preferences.
Analysis Cookies
To help us determine how visitors interact with our website to improve the user experience.
Marketing-Cookies
To help us offer and evaluate relevant content and interesting and appropriate advertisement.